AI Roadmap Workbook for Non-Technical Business Leaders
A simple, practical workbook showing how AI can truly benefit your business — and where it may not be useful.
The Dev Guys – Mumbai — Think deeply. Build simply. Ship fast.
Why This Workbook Exists
In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.
This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.
You don’t need to understand AI models or algorithms — just your workflows, data, and decisions. AI is simply a tool built on top of those foundations.
Best Way to Apply This Workbook
Either fill it solo or discuss it collaboratively. It’s not about completion — it’s about clarity. By the end, you’ll have:
• A prioritised list of AI use cases linked to your business goals.
• Understanding of where AI should not be used.
• A realistic, step-by-step project plan.
Use it for insight, not just as a template. A good roadmap fits on one slide and makes sense to your CFO.
AI planning is business thinking without the jargon.
Starting Point: Business Objectives
Start With Outcomes, Not Algorithms
The usual focus on bots and models misses the real point. Non-technical leaders should start from business outcomes instead.
Ask:
• Which few outcomes will define success this year?
• Where are mistakes common or workloads heavy?
• Which decisions are delayed because information is hard to find?
AI matters when it affects measurable outcomes like profit or efficiency. Only link AI to real, trackable business metrics.
Start here, and you’ll invest in leverage — not novelty.
Understand How Work Actually Happens
Understand the Flow Before Applying AI
Before deciding where AI fits, observe how work really flows — not how it’s described in meetings. Ask: “What happens from start to finish in this process?”.
Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice issued ? tracked ? escalated ? payment confirmed.
Inputs, actions, outputs — that’s the simple structure. Ideal AI zones: messy inputs, repeatable steps, consistent outputs.
Step Three — Choose What Matters
Evaluate Each Use Case for Business Value
Not every use case deserves action; prioritise by impact and feasibility.
Map your ideas to see where to start.
• Quick Wins: easy and powerful.
• Strategic Bets — high impact, high effort.
• Optional improvements with minimal value.
• High cost, low reward — skip them.
Add risk as a filter: where can AI act safely, and where must humans approve?.
Small wins set the foundation for larger bets.
Foundations & Humans
Get the Basics Right First
AI projects fail more from poor data than bad models. Check data completeness, process clarity, and alignment.
Human Oversight Builds Trust
Let AI assist, not replace, your team. Over time, increase automation responsibly.
The 3 Classic Mistakes
Avoid the Three AI Traps for Non-Tech Leaders
01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Problem — learning without impact.
03. The Automation Mirage — expecting overnight change.
Fewer, focused projects with clear owners and goals beat scattered enthusiasm.
Collaborating with Tech Teams
Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Ask vendors for proof from similar businesses — and what failed first.
Signals & Checklist
Signs Your AI Roadmap Is Actually Healthy
You can summarise it in one slide linked to metrics.
Your team discusses workflows and outcomes, not hype.
Pilots have owners, success criteria, and CFO buy-in.
The Non-Tech Leader’s AI Roadmap Checklist
Before any project, confirm:
• Which business metric does this improve?
• Is the process clearly documented in steps?
• Is the data complete enough for repetition?
• Who owns the human oversight?
• How will success be measured in 90 days?
• If it fails, what valuable lesson remains?
The Calm Side of AI
AI done right full stack product engineering feels stable, not overwhelming. Focus on leverage, not hype. True AI integration supports your business invisibly.